
Metaphor: A System for Related Search Recommendations

Azarias Reda
University of Michigan

azarias@umich.edu

Yubin Park
University of Texas at Austin
yubin.park@utexas.edu

Mitul Tiwari
LinkedIn

mtiwari@linkedin.com

Christian Posse
LinkedIn

cposse@linkedin.com

Sam Shah
LinkedIn

samshah@linkedin.com

ABSTRACT

Search plays an important role in online social networks as it pro-
vides an essential mechanism for discovering members and con-
tent on the network. Related search recommendation is one of sev-
eral mechanisms used for improving members’ search experience
in finding relevant results to their queries. This paper describes
the design, implementation, and deployment of Metaphor, the re-
lated search recommendation system on LinkedIn, a professional
social networking site with over 175 million members worldwide.
Metaphor builds on a number of signals and filters that capture
several dimensions of relatedness across member search activity.
The system, which has been in live operation for over a year, has
gone through multiple iterations and evaluation cycles. This paper
makes three contributions. First, we provide a discussion of a large-
scale related search recommendation system. Second, we describe
a mechanism for effectively combining several signals in building
a unified dataset for related search recommendations. Third, we in-
troduce a query length model for capturing bias in recommendation
click behavior. We also discuss some of the practical concerns in
deploying related search recommendations.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms, Design, Experimentation

Keywords

Query Suggestions, Recommender System, Log Analysis

1. INTRODUCTION
Search plays an important role in social networking sites such

as LinkedIn as it provides an essential mechanism for discovering
members and content on the network. By the time members have
scrolled to the bottom of a search results page, it is reasonable to
assume that they have not found what they are looking for, at least

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

on the first page. This is when related search recommendations are
most useful: they allow users to refine their searches or explore
variants by providing alternate queries to their original search. Re-
lated search recommendations (“related searches”) provide an im-
portant tool for improving members’ search experience in finding
relevant results to their queries and improving overall search en-
gagement.

This paper describes Metaphor, the related searches system on
LinkedIn. LinkedIn is a professional social networking site with
over 175 million members worldwide, serving billions of searches
every year. Search is particularly important in the professional con-
text of the LinkedIn network, and represents one of the primary av-
enues for members and companies to find and connect with one an-
other. Metaphor is an important addition to the set of tools used to
guide members in their search experience. These related searches
are displayed at the bottom of the search results page, as shown
in Figure 1 for the query “Hadoop”. In this paper, we will de-
scribe the design, implementation, and deployment of Metaphor—
including scalability and practical considerations of mining billions
of queries—that drives related search recommendations. At the
time of writing, Metaphor has been in production for more than
a year.

Metaphor builds on a number of signals and filters that capture
several dimensions of relatedness in search activity, populating a
unified dataset that drives related searches. Related searches are
computed and periodically updated offline in a batch mode as a
series of Hadoop MapReduce [18] jobs, which handles paralleliza-
tion.

There are four main signals that go into building the search rec-
ommendation dataset. The first signal is based on collaborative fil-
tering [1]: analyzing what members search for together. Using ses-
sionized search logs, we establish sets of related query pairs based
on temporal proximity. Each member is allowed a limited number
of votes in associating query terms with each other, and the system
penalizes generally popular terms.

The second signal is based on a result-anchored relationship of
query terms. Using search logs for queries and results, the system
constructs a click graph for searches. This results in a bipartite
graph from queries to search results, with a many-to-many rela-
tionship between the vertices. Unlike previous applications of click
graphs for related searches [14, 29], our approach benefits from the
personalized nature of search on social networks, and in particular
LinkedIn, where results are largely ordered by degree distance in
the social graph from the searcher. For a given query, there are of-
ten several clicks resulting from the search, and for a given search
result, there are several queries that lead to the result being clicked.
This graph reflects the collective click behavior of members. Us-
ing this graph, Metaphor generates related searches by anchoring

on results that relate queries with each other. We call this signal a
query-result-query signal.

The third signal leverages query term overlap. This is a com-
monly used approach in query suggestion on web search engines.
We refine this approach to first identify terms within a query that
have more significance to its meaning. Metaphor evaluates the fre-
quency of terms in the query log, and how often the parts of the
query occur together. When generic terms are used together with
meaning-rich ones, the system identifies the terms that are more
important to the query (for example, “Hadoop” in “Hadoop devel-
oper”). After priority of each term is established, Metaphor finds
related queries that share important terms.

Related searches can help users to refine a given search query.
For example, if a user searches for “Hadoop” to find Hadoop de-
velopers, we could suggest “Hadoop engineer” or “Hadoop devel-
opers”, a refined query. The fourth signal in the recommendation
pipeline helps with this problem by looking at the number of terms
in a given query and its suggestions: suggestions with more terms
are more likely to be refined queries. We built a statistical model
for capturing click behavior on results based on recommendation
length, which Metaphor uses as a bias to filter recommendations
from the previous three signals.

After experimenting with recommendations from the individual
signals on the production website for isolated evaluation, we set-
tled on a step-wise union combination of related searches. In this
approach, recommendations from collaborative filtering are back-
filled with query-result-query recommendations and then partial
overlapping recommendations. After each union step, we perform
a length-biased filter based on our analysis of past clicks on recom-
mendations.

Our evaluation shows that this approach results in 15% more
clicks compared to collaborative filtering, the best signal in the en-
semble, and a common technique for deriving such related search
suggestions in large-scale production scenarios [24]. Metaphor
scales to billions of queries and the recommendations can be com-
puted using idle cluster resources.

The main contributions of this paper include:
• The description of the design, implementation, and deploy-

ment of a large-scale related search recommendation system
that mines billions of queries,
• A mechanism for effectively combining several signals in

building a unified dataset for search recommendation, and
• A novel approach of using query length for modeling click

behavior and biasing search suggestions to reflect search in-
tent

In addition, we enhanced signals to generate related searches,
which included a variation of query-result-query click graph
method and a partial matching technique that weighs in the speci-
ficity of each query term. Finally, we evaluated Metaphor by
performing large-scale bucket or split tests involving millions of
queries and members, an effective way of measuring the quality of
a real recommendation system.

The rest of the paper is organized as follows. First, we discuss
related work in Section 2. In Section 3 we describe the design prin-
ciples, data flow behind Metaphor, and algorithms that comprise
the various signals in the system. We then discuss the implemen-
tation and deployment of the system on the LinkedIn infrastructure
in Section 4. We describe our evaluation and results in Section 5.
Finally, we provide our conclusion and plans for future work in
Section 6.

2. RELATED WORK
Related search recommendation has been an active area of re-

Figure 1: A screenshot of related searches in the context of a

search for the query “Hadoop.” The module shows a maximum

of 8 results in a two-column layout and is available on every

page of the search results.

search in the context of web search [9, 22, 25, 34, 41], and recently,
e-commerce site search [24]. Metaphor is influenced by this re-
search and by recommendation systems at large, and takes advan-
tage of some popular recommendation techniques such as collabo-
rative filtering [36] in addition to utilizing click graphs and partial
matches.

Collaborative filtering based recommender systems have been
successfully applied for movie recommendations [8] and product
recommendations in e-commerce sites [24]. In Metaphor, query
relatedness is implicit in query logs unlike movie rating data or
historical purchases. Implicit relatedness among queries based on
user sessions has been used for search recommendation in the con-
text of web search engines [10, 11, 22, 25, 41]. Recently, query-
flow graphs [10, 11] have been utilized to compute similarity be-
tween a pair of queries using the transition probabilities between
them. Fonseca et al. [22] generate related queries by mining web
search query logs and identifying queries that co-occur in the same
session, while Zhang and Nasraoui [41] proposed finding related
queries based on session and content similarity measures. A col-
laborative filtering approach based on implicit relatedness among
queries works well (see Section 5), and forms an important com-
ponent of Metaphor. However, in the context of a social network,
collaborative filtering fails to discover related queries performed by
different members, and it can be effectively combined with other

interesting signals that improve the overall performance of related
search recommendation.

Utilizing clicked results for queries is another way of extracting
related searches. Baeza-Yates et al. [7] introduced the idea of using
clicks to infer related searches, which was then used to recommend
queries by clustering searches leading to clicks on the same result.
This approach was further developed to build an explicit bipartite
graph with queries and results [4, 5, 14, 29]. The bipartite graph
indirectly conveys the semantic relatedness of queries, which has
been shown to be effective in search recommendation. Social net-
works provide a new context for click-based approaches that benefit
from the underlying structure of members and the social graph. The
personalized nature of search on LinkedIn, where results are largely
ordered by degree distance, produces different results for different
members, which often leads to different clicks for the same query.
In aggregate, this allows us to discover diverse yet relevant recom-
mendations. Furthermore, we have made several modifications to
the algorithms and tailored them to the MapReduce framework as
discussed in Section 3.

Partial matching techniques often can be found in query expan-
sion research [15, 17, 38, 40]. Voorhees [38] shows lexically related
words ameliorate mismatched vocabulary problems. Query refine-
ment [26] and search shortcuts [13] are closely related to this con-
cept. Our partial matching engine also suggests lexically overlap-
ping queries to users. However, this process is significantly assisted
by a prioritization step that identifies semantically important parts
of a query. We utilize the frequency of terms and co-occurrence
in the search log to rank the importance of terms within a query.
This allows us to perform partial matches primarily based on terms
that are essential to the query. We combine these approaches with a
query length model that captures bias in recommendation click be-
havior. Based on statistical analysis of clicks on related searches,
this length bias model is used to filter recommendations from the
underlying signals. Although query length has been closely an-
alyzed in the context of search characterization [3, 35], this is the
first application of a length bias model in related search recommen-
dation to the best of our knowledge.

Finally, ensemble methods such as bagging [12], boosting [32],
stacking [39], and cascading [23] are widely studied in machine
learning and statistics [20]. Some of these ensemble methods
have been successfully applied in various recommendation scenar-
ios such as movies [33] and music [21]. Most of these ensemble
methods assume comparable performances in their base classifier
engines, and expect overlap among datasets generated by each en-
gine. However, each of our signals generates datasets with rela-
tively small overlap and varied performance in different contexts.
After experimenting with several alternatives, we devised a step-
wise union model that combines the signals based on priority de-
rived from empirical observations. As we will discuss in Section 5,
this results in improved query coverage and clicks.

3. DESIGN
Metaphor is a data intensive system that relies on billions of

queries in search activity logs to compute suggestions, which
amounts to terabytes of search, result, and click data. This data
is analyzed in building search recommendations based on a series
of signals, notably correlating queries based on time, clicks, and
the contents of the query string itself. Metaphor combines these
underlying signals to generate a unified recommendation dataset
for related searches. This section discusses these signals and the
combination process in detail.

3.1 Collaborative Filtering

User Query Time (hh:mm) Query pairs

John

q1 17:04 (q1, q2), (q1, q3)
q2 17:06 (q2, q1), (q2, q3)
q3 17:07 (q3, q1), (q3, q2)
q4 20:52 -

Chris
q5 21:34 (q5, q6)
q6 21:39 (q6, q5)

...

Table 1: Query pairs based on temporal locality. q4 is tem-

porally distant from the other queries, thus it does not form a

query pair. Note that each query pair is differently weighted

according to the time between two queries.

The first signal we use to generate related search recommenda-
tions is based on collaborative filtering techniques. The collabo-
rative filtering based signal uses temporal locality between queries
as the primary factor for relating searches, that is, searches corre-
lated by time are considered related. This is enabled by search logs
that give us access to the search behavior of members in the social
network.

Collaborative filtering in a social networking context can be en-
hanced by the strong sense of member identity as follows. We
start by grouping together queries performed by the same member.
We continue by identifying sessions within each member’s search
history using the inter-search time. We consider the member to
have two sessions if the time elapsed between consecutive searches
is above a threshold (currently set to 30 minutes). Using all the
queries within a session, we form bidirectional (from, to) pairs of
queries, which is a permutation rather than a combination. For each
pair, we consider the time in between the two searches to assign a
weight for the relationship between them. The farther apart the two
searches are in the session, the lower the weight associated with the
pair. Table 1 describes a brief example of the process.

Since some users often search for similar things, we would like to
discount the impact of repeated searches across several sessions of
the same user. We accomplish this by considering only one weight
(the highest) for each unique pair that was generated by the same
user. At the end of this process, we have each pair associated with
a weight, with potentially many users having the same pair with
different weights. This allows us to calculate a TF-IDF (term fre-
quency, inverse document frequency) [6] score that will eventually
be used for recommendations.

To compute the TF-IDF score, we first aggregate all identical
pairs, with the final pair weight given as sum of the individual
weights from each pair. The TF component in TF-IDF score for
each pair is the final pair weight. The IDF component is impor-
tant because it dampens queries that are generally popular, which
end up forming pairs with a large number of other queries. If such
queries are not appropriately dealt with, we would have them as
recommendations for an unproportionally large number of queries.
For example, President Barack Obama is an active member of the
site and is regularly searched out of curiosity; this penalization pre-
vents searches for him from being incorrectly correlated with other
queries.

We use a variant of the Jones-Robertson IDF measure [31] for
our application as given in Equation (1). For a query q:

IDF(q) = log
d · (N −D(q) + 0.5)

D(q) + 0.5
(1)

In this case, N is the total number of pairs in the dataset, D(q)
is the number of pairs that contain query q and d is a dampening
factor, which was tuned using offline precision/recall evaluation.
The resulting TF-IDF score is used to generate recommendations

q1 q2 q3 q4 q5

r1 r2 r3

Figure 2: Query-result-query diagram. An arrow from qi to rj
represents a click on result rj for query qi. Queries (q1, q2, q3)
are related through clicks on the same result r1, and queries

(q3, q4) are related through clicks on the result r2.

from the collaborative filtering signal.

3.2 Query-result-query (QRQ)
The second signal we consider in constructing the related search

dataset is relationship through member click activity. The ba-
sic idea in this signal is that by paying attention to similarity in
click behavior for queries, we can discern some relatedness among
queries. The LinkedIn search engine orders results largely by de-
gree distance in the social graph from the searcher; thus, users
searching for the same query will often get different results based
on their social graph. Moreover, users are likely to be presented
with intersecting result sets even as they are searching for different
terms. This allows us to analyze click behavior from several mem-
bers, and build relationships among different queries that prompt
users to click on similar results. As a simple example, if several
members searching for “Hadoop” and “MapReduce” end up click-
ing on similar results, then it might be a good idea to associate these
searches in our related search recommendation. This allows us to
recommend “Hadoop” in future searches of “MapReduce” and vice
versa. Figure 2 shows the idea behind the query-result-query sig-
nal.

We begin data processing by identifying results that were clicked
from the search results page in our logs. We then form (query,
clicked-result) pairs by associating each query with the correspond-
ing results that were clicked by the user. To prevent bias from a few
members who often click on the same result, we document a pair
only once per member. We then aggregate all similar pairs and
attach a count to each unique pair, C(q, r), which essentially de-
scribes the number of unique members who clicked on result r for
query q.

The data processing then branches to two complementary com-
ponents. On one hand, we aggregate all pairs with the same clicked-
result r, say G(r), and rank queries based on the pair count ob-
tained in the previous step. With that goal in mind, we obtain G′(r)
from G(r) with a few optimizations as follows. First, we remove
clicked results that have too many unique inbound queries. Such
results are too popular to form a meaningful relationship among
the inbound queries. Second, we remove results that are clicked
only for a single query since we require at least two queries to be
related with each other. Finally, we sort the words in each query
alphabetically, resulting in a bag of words model. This allows us
to combine queries that would result in the same search result (for
example, “Hadoop developer” and “developer Hadoop”). We de-
fine branching B as a measure that captures how many inbound
branches a clicked result has. For a query q and a clicked result r,
we define:

B(q, r) =
C(q, r)∑

(q′,r)∈G′(r) C(q′, r)
(2)

In addition, we aggregate all pairs with the same query, and rank
the results that were clicked for this query using the pair count. Let
K(q) represents all the clicks from query q across all searches. We
obtain K′(q) by the optimizations as described in the preceding

paragraph. We define relevance R that captures how important a
particular clicked result r was to a query q as follows:

R(q, r) =
C(q, r)∑

(q,r′)∈K′(q) C(q, r′)
(3)

With both components—ranked queries and ranked clicks—
available, we join the two datasets to infer relatedness among
queries. For each result associated with a query, we identify a num-
ber of other queries that also lead to the result being clicked.

To combine these measures, we define a QRQ score for related
queries. Let for a query q, a number of other queries qi, . . . , qj are
related through a clicked result r. The QRQ score for each of those
queries with respect to q is:

score(q, qi) =
∑

r

R(q, r) · log(1 +B(qi, r)) (4)

Here the sum is over each result r such that at least one member
clicked on result r for queries q and qi.

The intuition behind the QRQ score is that we consider both how
important the result was to the query, and how important the poten-
tially related query was to the result. From our empirical results, we
find that we get better recommendations by emphasizing relevance
over branching, hence the log scale for branching.

Finally, we deal with the issue of some queries that are gener-
ally more popular than others. Even with the measures taken to
decrease bias, we find that certain queries can sometimes dominate
recommendations because of their general popularity. To dampen
those suggestions, we calculate TF-IDF scores, much in the way
we did for collaborative filtering, using the QRQ score from above
as the TF component, and the IDF component as computed in Sec-
tion 3.1. We use these adjusted scores when generating recommen-
dations for the query-result-query signal.

3.3 Partial Matches
The third signal we consider in building the related search rec-

ommendation set is the term overlap of queries (partial matching).
Although the basic principle in this approach is straightforward,
several adjustments must be made to obtain good recommenda-
tions. With millions of unique queries, term overlaps are rather
common, and the difficulty is in identifying a set of queries that
are “meaningfully” overlapping. To tackle this problem, we start
out by grouping unique queries together and counting their occur-
rence. This results in pairs of form (query, count) that are used as
input for further processing.

For each unique query, we then identify the tokens (terms) that
make up the query. The tokenization process incorporates some
optimizations. First, we remove stop words from the set that add
little meaning to the query. In addition, we also remove very short
tokens. While this can potentially remove some meaningful tokens,
the optimization measurably improves overall relevance of the rec-
ommendations. Using the query pairs and their associated tokens,
we generate a new set of tuples of the form (token, query, count).
We then regroup the tuples using the tokens as key, which gives us
a set of queries that share the token.

Given the volume of queries that share a token with each query,
we make two important observations. The first is that not all to-
kens in the query are equally important to the query in question.
For example, if we consider the query “Hadoop engineer”, the
term “Hadoop” is more important to the query than the term “en-
gineer”. Accordingly, it is more useful to make recommendations
that look like “Hadoop developer” rather than “mechanical engi-
neer”, although both queries share a token with the original query.
To measure importance of a token t in the query, we use a flavor of

an inverse document frequency as follows:

IDF(t) = log
M −Q(t) + 0.5

Q(t) + 0.5
(5)

Here, M is the total number of unique queries and Q(t) is the total
number of queries that contain the token t. The more common a
token is across different queries, the less significant we consider it
for any one of them.

The other observation is that we can apply a similar principle
to filter out queries that are generally popular. Therefore, the final
scores we assign to potential recommendations depend on both how
important the token is to the query, as well as how popular the other
queries that are associated with the token are. For a given query,
we first identify all the queries that share a token with it using the
(token, query, count) tuple, and then score each potentially related
query as a multiple of the token significance measure and the TF-
IDF measure of the related query in the corpus of queries. We use
this score to generate recommendations based on partial matches.

3.4 Length Bias
Related searches can help members refine a given query. If a

member has a clear objective when searching, they might ben-
efit from query suggestions for refinement as the initial query
might not directly map to their desired result. For example, if a
member searches for “Hadoop” to find Hadoop engineers, related
searches can suggest refined keywords such as “Hadoop engineer”
or “Hadoop developer”. We refer to this type of query suggestions
as “refined” queries.

We developed a statistical biasing engine based on LinkedIn
members’ overall behavior. The analysis of the click behavior
on displayed recommendations suggests a feature that captures the
properties of refined queries. From our analysis, the number of
words in queries is related to refinement type of queries, where
longer queries tend to be more refined. Furthermore, we observed
that members often click suggested queries that are slightly longer
than the original query, but not too much longer.

We call this behavior “drift,” which translates to a members’
click preference for slightly longer recommendations. The addi-
tive drift score, which models the drift behavior, depends on the
length of the previous query and the next query. The new score S′

is computed by adding the drift score δ to the original score S:

S
′ ← S + λ · δ (6)

where λ controls the strength of the length bias module. Since the
length bias drift takes an additive form with a control parameter λ,
this bias term is flexible in combining with multiple signals. By
setting λ larger, longer queries tend to receive a higher score. The
value of λ is determined by A/B testing to capture members’ prefer-
ences. The additive drift score δ is computed using a parameterized
equation of the form:

log(δ|qp) ∝ −
‖ l(qn)− (α · l(qp) + β) ‖2

l(qp)
(7)

where qp and qn are the previous query and the next query respec-
tively, parameters α, β are greater than zero, and for a query q,
function l(q) returns the length of the query q. The parameters (α,
β) in Equation (7) are estimated using search query logs. Table 2
illustrates how the length bias module affects the recommendation
result for a query “Hadoop”. The length bias lifts longer recom-
mendations to higher rankings, resulting in more “refined” queries
in top-N recommendations. Parameter estimation and experimental
results will be further explained in Section 5.2.1.

Recommendations Length Score L-bias Total

HBase 1 23.21 0.70 23.91
Hadoop developer 2 20.30 4.26 24.56
Cloud computing engineer 3 11.30 3.49 14.79

Table 2: Effects of the length bias module when α = 1.4,

β = 1.0, and λ = 5. Scores and L-biases represent original

scores and length bias drifts, respectively. Longer recommen-

dations tend to attain higher rankings after the length bias ad-

justment; for example, “Hadoop developer”, which was second

in original scores, becomes the first recommendation. Note that

parameters and terms are arbitrarily selected to illustrate the

mechanism.

3.5 Ensemble Approach
After generating related searches using the three separate sig-

nals and a length bias filter, the next step is to create a unified rec-
ommendation dataset that will be shown to members. To decide
how to best combine signals together, we turned to empirical anal-
ysis. As we report in the evaluation section, we first segmented
the LinkedIn population and ran the various signals individually on
the website to get measures of performance. These measures in-
clude precision/recall, click-through rate, clicks, and coverage rate,
as our evaluation will show.

Our first model was based on binary classification of the three
signals with respect to click-through, which was not successful:
we find there is minimal overlap across the clicked recommenda-
tions for related search suggestions. This led us to analyze the gen-
eral characteristics of recommendations that were generated from
the signals. As we see in the evaluation, the overlap is relatively
small not only in the clicked recommendations, but also in the ac-
tual datasets that were generated from the three signals.

The minimal overlap of suggestions allows us to consider a dif-
ferent approach—step-wise unionization—for combining recom-
mendations. Since our individual analysis has given us information
on relative performance of signals, we are able to prioritize signals
in the step-wise union. Accordingly, we first backfill collaborative
filtering results with query-result-query recommendations. This is
then processed through the length-bias filter to promote potentially
better recommendations. We then backfill the result set with partial
match recommendations, and once again run the length bias filter.
In each of the union steps, we take measures to remove duplicate
or near duplicate recommendations using a threshold minimum edit
distance between recommendations. When it is time to display re-
lated searches, we choose the top-N results from this union set.

3.6 Practical Considerations
As a system designed for public consumption from the begin-

ning, we had to consider a number of practical issues before de-
ploying it to end users. For example, we have a very strong pro-
fanity filter that conservatively removes potentially offensive terms
from recommendations. We apply the filter in the query prepara-
tion phase before using queries as an input for any of the signals. In
addition, we incorporate a mechanism to deal with common mis-
spellings in recommendations: in our recommendation dataset for
a given query, we look at all suggested queries that are within a
threshold of edit distances (currently set to less than or equal to 2)
from each other. All such recommendations are collapsed to the
most common entry in the set, which often removes many of the
misspellings and typos in the collection.

Another important consideration was language. LinkedIn is an
international website translated in a multitude of languages. We
bucket search queries by language, and related searches are com-
puted on these buckets. As LinkedIn has strong identities, these

Metaphor

Hadoop

Search
Backend

Kafka

Voldemort

Related
Searches
Backend

Front
End

HDFS

Figure 3: Dataflow in LinkedIn’s production system. Track-

ing data is aggregated through Kafka, and after processing the

data in Hadoop, related searches recommendations are stored

in Voldemort to serve to end users.

buckets are determined from the locale of the member performing
the search, which segments Metaphor’s recommendations by lan-
guage fairly well. This frees the system from performing language
detection, which is difficult and often error-prone.

Finally, LinkedIn uses a number of mechanisms to detect spam
and tag suspicious accounts accordingly. Like all of our produc-
tion systems, the related searches pipeline receives input from these
spam filters to remove queries that were performed by tagged ac-
counts.

4. IMPLEMENTATION
The Metaphor pipeline runs on Hadoop, an open source imple-

mentation of MapReduce [18]. MapReduce provides a framework
for processing big datasets on a large number of commodity com-
puters through a series of steps that partition and assemble data in
a highly parallel fashion. It further simplifies the process of writ-
ing parallel programs by providing the underlying infrastructure,
failure handling, and simple interfaces for programmers.

Figure 3 shows how data flows through Metaphor. Incoming
query logs and other activity-based tracking data is aggregated from
production services using Kafka [27], a publish-subscribe system
for event collection and dissemination. This log data can be easily
represented as a set of tuples, which is a natural fit for Hadoop’s dis-
tributed computing paradigm. As of this writing, Kafka aggregates
hundreds of gigabytes of data and more than a billion messages per
day from LinkedIn’s production systems.

Metaphor consists of a series of MapReduce jobs implemented
in Java and Pig [30], a high-level scripting language on top of
Hadoop. In total, there are over 50 MapReduce jobs, from initially
pre-processing the query logs to computing and combining the req-
uisite signals. Figure 4 shows a sketch of how data flows within
these jobs.

There is some dependency among these jobs, where a job might
require outputs from another job to continue. These dependencies
are expressed using a workflow manager. Jobs such as query prepa-
ration need to be prioritized before all other jobs, while each indi-
vidual signal can proceed independent of each other. In addition to
dependency management, the workflow manager provides a set of
useful services like resource locking, log collection, error report-
ing, simplified configuration, and job scheduling.

The pipeline scales well, as our evaluation shows (see Sec-
tion 5.3), and handily processes the production data size of
LinkedIn. Related searches need only be updated infrequently,
meaning the computational cost can be amortized away by using
idle cluster time. Once computed, the resulting recommendations
are served to end users through Voldemort [37], an open-source
key-value system, which is similar to Amazon’s Dynamo [19].

5. EVALUATION

Query Pre-

processing

Pair Formation

CF Scoring

Graph

Formation

QRQ Scoring

Token

Identification

Partial Scoring

Step-wise

Union

Length Bias

Filter

Step-wise

Union

Figure 4: Dataflow in the Metaphor pipeline. Each stage con-

sists of one or more MapReduce jobs that process loaded query

and click data.

Iterative evaluation was an important part of the system devel-
opment, and this section provides some of the characteristics and
performance measures we used as we tuned related search recom-
mendations. The first evaluation approach we used was an offline
measure of precision/recall for the various signals in Metaphor.
Second, we segmented the LinkedIn user base and conducted sev-
eral A/B tests that were used to provide online measurements of
performance. We used the results of these evaluations to derive the
unified approach for the current recommendation set on production.
Finally, we evaluated the runtime of the Metaphor pipeline.

Our evaluation answers the following questions:
• What is the performance of each of Metaphor’s individual

signals and its ensemble approach?
• What is the impact of length biasing?
• What is the system performance of the Metaphor pipeline

and how does it scale?

5.1 Offline Evaluation
Offline evaluation provides a scientific and easily repeatable

mechanism for establishing performance and tuning parameters.
As a proxy for relevance, we measure the accuracy of predicting
a member’s future searches given their current search using pre-
cision and recall. In general, analysis of top-N recommendations
shows that accuracy metrics such as precision/recall provide a bet-
ter performance evaluation than error metrics [16].

We segment the query log into a training and test set. We start
by generating the top-N recommendations for the training set from
each signal of interest, where N is the number of recommendations
that would be displayed to the user. To determine correctness in the
test set, we use a moving time window of length K, which deter-
mines how far into the future from the current search we should
consider in the member’s search activity. This correct set is de-
fined as the set of searches that were performed by the user in the
following K minutes.

Precision and recall are defined as the mean of the average pre-
cision and recall, respectively, computed per member. A related

CF Partial QRQ

0.00

0.02

0.04

0.06

0.08

0.10

Prec Rec Prec Rec Prec Rec

P
re

c
is

io
n

 /
 R

e
c
a

ll
Window (min.) 10 15 20

Figure 5: The mean average precision and recall measures for

the top-10 recommendations as we vary the moving time win-

dow used to determine the correct set.

search recommendation is relevant if the recommendation is in the
correct set. Precision is the ratio of the number of relevant rec-
ommendations to the total number of recommendations N , while
recall is the ratio of the number of relevant recommendations to
the total number of searches in the correct set. This precision/recall
measure indicates how well the recommendations reflect members’
future search activity in the next K minutes.

Admittedly, this captures only a narrow dimension of recommen-
dation quality by introducing a strong visibility bias: without mem-
bers having seen possible recommendations, the precision/recall
measurement only tells us the ability of our signals to predict fu-
ture search behavior, not the system’s ability to find other novel
or serendipitous searches. Thus, this measure is not necessarily a
strong indicator of recommendation performance, but it provides a
reasonable metric for fast, iterative offline evaluation.

Figure 5 shows a comparison of mean average precision and re-
call for collaborative filtering, partial matches, and query-result-
query. The precision and recall values are rather low as there
are very diverse searches on LinkedIn, making predicting future
searches quite difficult. As expected, recall increases as we increase
the time window K, while precision decreases. At all cutoffs, the
collaborative filtering approach has an advantage in both precision
and recall.

Figure 6 compares mean average precision and recall for
Metaphor’s union ensemble approach. To make comparisons eas-
ier, we show performance for a fixed recommendation size and time
cutoff, with the window size K set to 10 minutes and a top-N of 10.
The results are generalizable across other time window and top-N
values: the precision and recall values for the union approach are
less than the best performing signal, collaborative filtering. While
this is initially surprising, our discussion of the online evaluation
reveals why the union approach performs better in practice because
of a higher coverage of queries.

Furthermore, we evaluate the utility of related searches beyond
the metrics of precision and recall. While large gains in mean av-
erage precision are detectable to the user, nominal improvements
remain inconclusive [2]. Moreover, precision and recall in this con-
text simply captures the ability of the recommendation engines to
predict future search behavior, and is thus an incomplete proxy for
relevance. We would like a more robust measurement that more

Prec Rec

0.00

0.02

0.04

0.06

0.08

0.10

CF PartialQRQ Union CF PartialQRQ Union

P
re

c
is

io
n

 /
 R

e
c
a

ll

Figure 6: The precision/recall measures for the top-10 rec-

ommendations from the step-wise union-based ensemble ap-

proach. We use a 10 minute time window for the correct set.

directly evaluates a perception of quality.

5.2 Online Evaluation
We performed several isolated tests of the various signals in our

model on independent segments of the LinkedIn population, com-
monly known as A/B or bucket testing. When combined with of-
fline statistical analysis of recommendation signals, A/B tests allow
a deeper understanding of user engagement. We focused on a few
key metrics for this evaluation:
• Coverage. Not all typed queries have recommendations. The

coverage rate is the fraction of queries that have recommen-
dations for a given signal. The higher the coverage, the bet-
ter members’ experience if the recommendations are of high
quality.
• Impressions. Impressions describe the number of times rec-

ommendations were displayed and are analogous to the trig-
ger rate of the module on the search page. It does not make
sense to track impressions at the per recommendation level
(that is, 8 impressions as seen in Figure 1), as a member can
at most click on one result.
• Clicks. Related searches recommendations might not always

be useful to the user. A click by the user represents a vote
that this particular recommendation is relevant.
• Click-through rate (CTR). The click-through rate is the frac-

tion of clicks over impressions.
For each of these measures, we took care to ignore page reloads
and the browser back button to avoid incorrectly inflating the above
metrics.

Related searches are not the main focus of the search result page
(see Figure 1), but rather means for users to pivot to a more use-
ful, novel, or serendipitous search. It is tempting to consider CTR
as the sole basis for evaluation, but more careful consideration is
needed. It would make sense to count each individual search re-

sult on the page as an impression—changing the number of results
has a dramatic effect on the utility of the search—but for a small
module on the bottom of the page (a maximum of 8 results in a two-
column layout), absolute clicks is an additional important metric to
consider as it encapsulates the notion of coverage as well as qual-
ity. As a pedagogical example, consider a recommender that has a
single suggestion: it recommends “Hadoop” when given the typed
query “MapReduce.” Based on our query logs, this recommender

1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Suggestion Length (# of words)

N
o

rm
a

liz
e

d
 C

T
R

Query Length

(# of words)
1 2 3

Figure 7: Suggestion length (# of words) compared to normal-

ized CTRs for a given query length (# of words). Higher CTRs

are exhibited for longer suggestions than the original query.

would have a very high click-through rate, but very low coverage,
a handful of clicks, and ultimately little usefulness. Simply put, in-
creased clicks from users indicate the recommendations are more
useful.

As part of our online evaluation, we generated four datasets to
run split or A/B tests based on collaborative filtering, query-result-
query, partial matches, and step-wise union as described in Sec-
tion 3. We segmented the LinkedIn population into four separate
buckets of 10% each, serving one dataset to one of the members
buckets for 2 weeks. We first evaluate the effect of length biasing,
then gauge Metaphor’s ensemble approach.

5.2.1 Length Bias

In our initial analysis, we observe a key feature that is closely re-
lated to users’ clicks. This feature is the length difference between
clicked suggestions and typed queries. Figure 7 shows the CTRs,
which are normalized by the highest CTR in the given query length.
Somewhat surprisingly, the highest CTR appears on suggestions
one term longer than the original query, indirectly suggesting that
users tend to click more refined queries.

From our analysis, we observed that we can improve “future”
CTRs by only showing refined queries. For example, suppose a
user types a single word query, and we show only two word sug-
gestions. This removes 21% of the total suggestions for a single
word query, but increases the CTR by 23% (p<0.01). For two and
three word queries, similar results are observed. Simply suggest-
ing longer queries comparatively improves the CTR, but reduces
coverage, impacting overall clicks and hurting performance.

Our length bias filter can be regarded as a concise formulation
of this idea that utilizes users’ query selection bias; in other words,
we can softly adjust the length of the suggestions, as described in
Section 3.4. From our A/B testing, the scale parameter λ is set
as ≈ 20, which depends on the scale of the original score. Note
that λ determines the strength of length bias as noted earlier. Equa-
tion (7) in Section 3.4 approximates the behavior in Figure 7, where
α ≈ 1.5 and β ≈ 1 is estimated by minimizing KL-divergence [28]
between the parameterized equation and the observed CTR graph.
Accordingly, we can reflect our users’ length bias into the resul-
tant query recommendation distributions with a simple maneuver,
which would guarantee higher CTR values.

5.2.2 Ensemble Approach

Metaphor constructs three underlying signals for use in its rec-
ommendations. We observed that there was minimal overlap in
the clicks among various signals. In other words, different queries
seemed to be clicked for different recommendation approaches.

Signal Jaccard index

CF and Partials 0.36
CF and QRQ 0.27
Partials and QRQ 0.24

Table 3: Overlap of recommendation signals. The Jaccard in-

dex is a statistic for comparing the similarity between sets and

is defined as: J(A,B) = |A
⋂

B|
|A

⋃
B|

for sets A and B. As shown in

the table, there is little overlap between the Metaphor’s various

signals.

Signal
of recommendations

1–4 5–8 >8

CF 74% 10% 16%
QRQ 62% 18% 20%
Partials 27% 7% 65%

Table 4: The number of results for each signal. Collaborative

filtering and query-result-query have relatively few recommen-

dations for a given typed query.

This led us to analyze recommendation overlap in the underlying
dataset for the various signals. Although there was a significantly
higher number of recommendations for partial matches (about three
times the volume of the other signals), this dataset was inflated by
recommendations for tail queries that are not often searched for. As
a result, the difference in the coverage of recommendations for the
queries issued during our experiment was not that high.

Table 3 captures the set similarity among signals using the Jac-
card index between the recommendation datasets, which simply
gives the ratio of the intersection to the union. That is, for sets A

and B, J(A,B) = |A
⋂

B|
|A

⋃
B|

. The results indicate minimal overlap

across the various signals.
This suggests that we could combine recommendations in a step-

wise union. To further understand the implications of using an en-
semble, we looked at the depth of recommendations for each signal:
Table 4 shows the number of recommendations for each signal. We
found that collaborative filtering and query-result-query also have a
small number of recommendations for each query (less than 4 sug-
gestions for the majority of queries). Combined with low overlap,
this means a step-wise union can safely capture recommendations
from multiple methods.

To establish priority in our union approach, we looked at the
individual performance of the signals. Figure 8 shows the nor-
malized click, impression, and CTR for each individual approach.
On average, recommendations from collaborative filtering receive
almost twice as many overalls clicks and twice the CTR of par-
tial matches and query-result-query-based recommendations. Nat-
urally, Metaphor should show collaborative filtering-based results
first if available. Query-result-query matches are the second best
performing signal and should be shown second. Finally, recom-
mendations based on partial matches should be shown.

We also A/B tested this step-wise union ensemble, the results
of which are also shown in Figure 8 and validate this step-wise
union ensemble approach. While the CTR of the union approach
is virtually identical to collaborative filtering, coverage increases
by over 20% in the union model. As Metaphor’s suggestions are
able to span more typed queries, the absolute number of clicks im-
proves by about 15% compared to collaborative filtering (p<0.01),
the best signal in the ensemble. These clicks represent increased
engagement from users and are indicative of overall higher quality
recommendations.

These results differ from our offline evaluation because of a vis-
ibility bias. In the absence of ground truth, the offline evaluation

Clicks Coverage

CTR Impressions

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

CF Partials QRQ Union CF Partials QRQ Union

N
o

rm
a

liz
e

d
 V

a
lu

e
s

Figure 8: A/B results for clicks, coverage, CTR, and impres-

sions with the individual signals and the union model. Each

metric has been normalized to the maximum value within that

metric.

uses subsequent searches as its gold standard, which penalizes dis-
coverability. Here, precision and recall are only capturing future
search behavior and are not necessarily indicative of recommenda-
tion quality and engagement in a live system.

5.3 Runtime Performance
Finally, we evaluated the runtime performance of the Metaphor

pipeline. To understand the runtime behavior with respect to the
number of input queries, we ran the pipeline on a Hadoop test clus-
ter in isolation. This cluster consisted of 80 2x quad-core Nehalem-
based Intel Xeon 5500 Sun Fire x4275 machines at 2.533 GHz
with 24 GB RAM and 8x1 TB SATA drives configured in a 6:6
map:reduce ratio for a total of 480 available map and 480 available
reduce slots. We ran several experiments by varying the number of
input queries from 1 million to 3 billion and measured the comple-
tion time for the pipeline, as shown in Figure 9. Each experiment
was run five times, and the confidence interval is indicated on the
figure.

The pipeline scales quadratically due to the underlying nature of
our algorithms. There are some optimizations that can be made.
The partials signal is the most computationally intense as it gener-
ates more than 3 times the amount of output as the other signals.
This signal could be computed asynchronously and refreshed less
frequently than the rest of the pipeline.

More importantly, related search recommendations stay fresh for
a relatively long period of time and can be refreshed rather infre-
quently. To test this, we segmented the LinkedIn user population
into 3 A/B test buckets (10% each), refreshing recommendations
at a weekly, biweekly, and monthly frequency for each respective
bucket. Clicks and CTR were virtually indistinguishable between

Number of Queries (billions)

R
u

n
ti
m

e
 (

h
o

u
rs

)

2

4

6

8

10

12

14

l l

l

l

l

l

l

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 9: Runtime of the Metaphor pipeline while varying the

size of the input query log. The pipeline was run on a dedicated

80-node Hadoop test cluster for 5 trials each.

the weekly and biweekly refresh buckets, with a 1.2% drop in
clicks (p<0.01) and a 2.1% drop in CTR (p<0.01) in the monthly
refresh bucket. This makes intuitive sense: these recommenda-
tions only change at the introduction or shift in query terms, which
moves at the speed of the change in the professional lexicon.

In practice, the runtime of the pipeline is more than sufficient.
Hadoop provides horizontal scalability so it is easy and cheap to
add nodes, and due to the infrequent nature of this refresh, the com-
putational cost is completely amortized away by using idle cluster
resources.

6. CONCLUSIONS AND FUTURE WORK
This paper discussed the design, implementation and deploy-

ment of Metaphor, the related search recommendation system at
LinkedIn. With millions of searches served every day, related
search recommendation is an important addition to the suite of tools
used at LinkedIn to improve member search experience. There
are four main signals that went into building the recommendation
dataset for Metaphor. One signal is based on collaborative filtering,
and analyzes what members search for together based on temporal
proximity. Another signal takes advantage of search personaliza-
tion in the social network to derive relationships based on clicks.
Additional signals look at partial matches among queries and the
length differential between queries and suggestions for modeling
click behavior. We use a step-wise union with priority for combin-
ing signals into an ensemble. Metaphor has been in production for
more than a year.

We plan to work on two additional approaches to improve re-
lated search recommendations in the context of the social network.
The first is to incorporate and evaluate a user feedback loop for
displayed suggestions. A feedback loop can be useful because it
allows us to experiment with new recommendations that would not
otherwise have made it to the top-N suggestions displayed to the
user. This can be done by replacing some of the recommendations
with randomly selected choices from lower in the dataset. If a new
replacement is clicked often, we can then promote it to a higher
position in the recommendation list. Second, we also plan to work
on personalizing related searches based on member searches and
profiles, much like the core search experience that provides per-
sonalized results to members.

REFERENCES

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the
next generation of recommender systems: A survey of the

state-of-the-art and possible extensions. TKDE, 17(6):734–
749, 2005.

[2] James Allan, Ben Carterette, and Joshua Lewis. When will
information retrieval be “good enough?”. In Proceedings of

the SIGIR, 2005.

[3] Avi Arampatzis and Jaap Kamps. A study of query length. In
Proceedings of the SIGIR, 2008.

[4] Ricardo Baeza-Yates. Applications of web query mining. In
Proceedings of the ECIR, 2005.

[5] Ricardo Baeza-Yates. Graphs from search engine queries.
LNCS, 4362:1–8, 2007.

[6] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern In-

formation Retrieval. Addison Wesley, 1999.

[7] Ricardo A. Baeza-Yates, Carlos A. Hurtado, and Marcelo
Mendoza. Query recommendation using query logs in search
engines. In Proceedings of the EDBT Workshops, 2004.

[8] James Bennett and Stan Lanning. The Netflix prize. In KDD

Cup and Workshop, 2007.

[9] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra.
Query suggestions in the absence of query logs. In Proceed-

ings of the SIGIR, 2011.

[10] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Do-
nato, Aristides Gionis, and Sebastiano Vigna. The query-flow
graph: model and applications. In Proceedings of the CIKM,
2008.

[11] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Do-
nato, and Sebastiano Vigna. Query suggestions using query-
flow graphs. In Proceedings of the WSDM, 2009.

[12] Leo Breiman. Bagging predictors. Machine Learning, 24(2):
123–140, 1996.

[13] Peter D. Bruza and Simon Dennis. Query reformulation on
the internet: Empirical data and the hyperindex search engine.
In Proceedings of the RIAO, 1997.

[14] Carlos Castillo, Claudio Corsi, Debora Donato, Paolo Fer-
ragina, and Aristides Gionis. Query-log mining for detecting
spam. In Proceedings of the AIRWeb, 2008.

[15] Paul A. Chirita, Claudiu S. Firan, and Wolfgang Nejdl. Per-
sonalized query expansion for the web. In Proceedings of the

SIGIR, 2007.

[16] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Perfor-
mance of recommender algorithms on top-n recommendation
tasks. In Proceedings of the RecSys, 2010.

[17] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma.
Query expansion by mining user logs. TKDD, 15(4):829–839,
2003.

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified
data processing on large clusters. In Proceedings of the OSDI,
2004.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41:205–220, 2007.

[20] Thomas G. Dietterich. Ensemble methods in machine learn-
ing. LNCS, 1857:1–15, 2000.

[21] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus
Weimer. Recommending music items based on the Yahoo!

music dataset. In KDD-Cup, 2011.

[22] Bruno M. Fonseca, Paulo B. Golgher, Edleno S. de Moura,
and Nivio Ziviani. Using association rules to discover search
engines related queries. In Proceedings of the LA-WEB, 2003.

[23] João Gama and Pavel Brazdil. Cascade generalization. Ma-

chine Learning, 41:315–343, 2000.

[24] Mohammad Al Hasan, Nish Parikh, Byanit Singh, and Neel
Sundaresan. Query suggestion for E-commerce sites. In Pro-

ceedings of the WSDM, 2011.

[25] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
Greiner. Generating query substitutions. In Proceedings of

the WWW, 2006.

[26] Reiner Kraft and Jason Zien. Mining anchor text for query
refinement. In Proceedings of the WWW, 2004.

[27] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A distributed
messaging system for log processing. In Proceedings of the

NetDB, 2011.

[28] Solomon Kullback and Richard A. Leibler. On information
and sufficiency. Ann. Math. Statist., 22(1):79–86, 1951.

[29] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query
suggestion using hitting time. In Proceedings of the CIKM,
2008.

[30] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, and Andrew Tomkins. Pig Latin: a not-so-foreign
language for data processing. In Proceedings of the SIGMOD,
2008.

[31] Stephen Robertson. Understanding inverse document fre-
quency: On theoretical arguments for IDF. Journal of Docu-

mentation, 60(5), 2004.

[32] Robert E. Schapire. A brief introduction to boosting. In Pro-

ceedings of the IJCAI, 1999.

[33] Joseph Sill, Gábor Takács, Lester Mackey, and David Lin.
Feature-weighted linear stacking. CoRR, abs/0911.0460,
2009.

[34] Yang Song, Dengyong Zhou, and Li-wei He. Query sugges-
tion by constructing term-transition graphs. In Proceedings of

the WSDM, 2012.

[35] Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and
Tefko Saracevic. Searching the web: The public and their
queries. Journal of American Society for Information Science

and Technology, 2001.

[36] Xiaofei Su and Taghi M. Khoshgoftaar. A survey of collab-
orative filtering techniques. Advances in AI, 2009:4:1–4:19,
2009.

[37] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chin-
may Soman, and Sam Shah. Serving Large-scale Batch Com-
puted Data with Project Voldemort. In Proceedings of the

FAST, 2012.

[38] Ellen M. Voorhees. Query expansion using lexical-semantic
relations. In Proceedings of the SIGIR, 1994.

[39] David H. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

[40] Jinxi Xu and W. Bruce Croft. Query expansion using local
and global document analysis. In Proceedings of the SIGIR,
1996.

[41] Zhiyong Zhang and Olfa Nasraoui. Mining search engine
query logs for query recommendation. In Proceedings of the

WWW, 2006.

