
Using Memex to archive and mine community Web browsing
experience

Soumen Chakrabarti , Sandeep Srivastava , Mallela Subramanyam , Mitul Tiwari

Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Abstract

Keyword indices, topic directories, and link-based rankings are used to search and structure the rapidly growing Web
today. Surprisingly little use is made of years of browsing experience of millions of people. Indeed, this information
is routinely discarded by browsers. Even deliberate bookmarks are stored passively, in browser-dependent formats; this
separates them from the dominant world of HTML hypermedia, even if their owners were willing to share them. All
this goes against Vannevar Bush’s dream of the Memex: an enhanced supplement to personal and community memory.
We present the beginnings of a Memex for the Web. Memex blurs the artificial distinction between browsing history and
deliberate bookmarks. The resulting glut of data is analyzed in a number of ways. It is indexed not only by keywords but
also according to the user’s view of topics; this lets the user recall topic-based browsing contexts by asking questions like
‘What trails was I following when I was last surfing about classical music?’ and ‘What are some popular pages related to
my recent trail regarding cycling?’ Memex is a browser assistant that performs these functions. We envisage that Memex
will be shared by a community of surfers with overlapping interests; in that context, the meaning and ramifications of
topical trails may be decided by not one but many surfers. We present a novel formulation of the community taxonomy
synthesis problem, algorithms, and experimental results. We also recommend uniform APIs which will help managing
advanced interactions with the browser.

Keywords: Community memory; Collaborative taxonomy synthesis; Browsing assistant

1. Introduction

What are the basic sources of information avail-
able from the Web? First-generation search engines
(Alta Vista ) initially exploited the tokens on each
page as the sole source of information. Second-
generation search engines (Google , Clever ) use
hyperlink structure as well.

Popular search sites answer tens of millions of
queries per day. We speculate that the total number
of browser clicks per day is at least three orders of
magnitude larger. This third source of information
has a scale that dwarfs the Web itself, and yet
is perhaps as rich and valuable as text and links.
Some centralized services (Alexa , Third Voice )
distribute a browser plug-in to monitor clicks and
add page reviews. Others (Hotbot , WiseWire )



670

monitor clicks limited within their site to improve
relevance ranking or dynamically reorganize content.

Nevertheless, most of the information latent in
years of clicking by millions of surfers is carelessly
discarded by browsers, unless they are deliberately
bookmarked. Even bookmarks are stored passively,
in browser-dependent formats; this separates them
from the dominant world of HTML hypermedia,
even if their owners were willing to share them.

In 1945, Vannevar Bush dreamt of Memex: an
enhanced, intimate supplement to personal and com-
munity memory [5]. Memex would unobtrusively
archive, analyze, and index our complete experience,
covering books, movies, music, conversation, etc.
Since then this theme of a ‘living’ hypermedium
into which we ‘weave ourselves’ has been empha-
sized often, e.g., by Douglas Engelbart and Ted
Nelson , and of late by Tim Berners-Lee .

Assisted by a Memex for the Web, a surfer can
ask the following questions:
ž What was the URL I visited six months back re-

garding compiler optimization at Rice University?
ž What was the Web neighborhood I was surfing the

last time I was looking for resources on classical
music?
ž Are their any popular sites, related to my (Web)

experience on classical music, that have appeared
in the last six months?
ž How is my ISP bill divided into access for work,

travel, news, hobby and entertainment?
ž What are the major topics relevant to my work-

place? Where and how do I fit into that map? How
does my bookmark folder structure that map on to
my organization?
ž In a hierarchy of organizations (by region, say),

who are the people who share my interest in recre-
ational cycling most closely and are not likely to
be computer professionals?
We propose an architecture of a Memex for the

Web which can answer the above questions. Memex
is a large project involving hypertext data mining,
browser plug-in and applet design, servlets and as-
sociated distributed database architecture, and user
interfaces. In this paper we will give an overview

of the major features of Memex, together with the
architecture and design decisions.

We have validated the design using a prototype
implementation. We will give examples of some of
the features using screen shots and measurements on
our prototype. The Memex service will be made
publicly accessible.

1.1. Architecture overview

The main function of Memex are personalization
and community formation. Personalization in our
context is different from the myriad MyXYZ portal
sites, which involve manual selection of topic direc-
tories from a catalog. In our case, personalization is
for both individuals and groups, and is done automat-
ically by mining archives of community browsing
experience, thus nurturing communities with clus-
tered topical interest.

A major issue is the level at which communities
are defined and analyzed. On one extreme, a cen-
tral service may be provided. This would be a poor
solution, not only owing to the formidable scale of
operation, but also the diversity of the population
and their interests. At the other extreme, individual
browser-level plug-ins have limited access to behav-
ior of anyone other than the user.

We therefore believe that the most successful
community formation and personalization tool is at
an intermediate level, such as an organization or
geographical divisions of an ISP. Trust is not as
major an issue at this level as on the Web at large;
after all, most of us (have to) trust the administrator
of our proxy cache and=or firewall machine. At the
same time, the problems of sparse, noisy data from
just one user is ameliorated somewhat by a larger
user population.

The present release of Memex consists of client
and server-side code, communicating via the applet–
servlet protocol. The server-side code needs Apache
with servlet support and a relational database, such
as Oracle or IBM Universal Database installed.
We avoid CGI-style solutions because the state ex-
changed between client and server is rather complex
compared to HTML form data, and extended ses-
sions with state are often useful. We anticipate that



671

each logical organization or group will install a
server.

We prefer not to assign the role of the Memex
server to the proxy or firewall computer. The latter
are already heavily loaded with their primary tasks.
In the database world, software is separately archi-
tected for day-to-day transaction processing (OLTP)
as against data analysis tools (warehousing, OLAP
and mining). We believe a similar division of labor
will be successful for Memex as well.

Unlike earlier browser plug-ins, for maximum
portability, the client-side code is a JDK1.2-compli-
ant applet. The applet polls the browser’s location
and sends the URL and other processed data through
an encrypted connection to the server, where more
analysis takes place. Java cannot steer us away from
platform-dependent code, especially owing to the
diverse browser security APIs. The applet runs on
Netscape Communicator 4.5C and Internet Explorer
4C. (A HotJava port is being planned.)

We use Javascript on UNIX and Dynamic Data
Exchange (DDE) on Windows to interact with
the browser, unlike some other systems like Web
Browser Intelligence (WBI) [3] or Third Voice which
install a client-side proxy. Unlike PowerBookmarks,
we do not use a server-side proxy for monitoring
clicks. Memex monitors the network performance
and reassigns page fetching and analysis jobs dy-
namically between client and server. We believe this
is an essential feature because a client may wish to
connect to a geographically remote server which has
a poorer Internet connection, or vice versa.

1.2. Features for archiving and analysis

Memex provides a platform for capturing hy-
pertext and meta-data based on content as well as
surfing events, in a structured manner. This lets us
build a collection of interrelated and cooperative pro-
grams that mine the Memex traces. We discuss the
major functions below.

Bookmarks are history. Browsers make an unnec-
essary distinction between history and bookmarks.
The prevalent view is that bookmarks are valuable
links deliberately archived by the user, whereas his-
tory is the list of all visited pages, long and mostly
useless, therefore suitable for purging now and then.
However, the rapidly increasing volume-to-cost ratio

of disks makes it unnecessary to discard anything
from our personal browsing trails, if only the re-
sulting mass of data can be organized and analyzed
usefully and effectively (features browsers do not
provide).

Note that Memex does not directly undertake
to archive the actual contents of the surfed pages.
Our design should make it quite simple to interface
Memex to other content and usage archives such as
Alexa Internet or the Internet Archive . This
will give additional benefits like never losing an
obsolete page.

Learning folder structure. We claim that users
create bookmarks sparingly only because of the com-
plexity of creating and maintaining structure in their
bookmark collection. If the user has a collection
of topically coherent folders, Memex will learn to
guess, using a hypertext topic learning algorithm, the
best placement of new history entries. Thus the entire
browsing experience of the user will be structured
into topics 15.

Proposing folder structure. Interests and topics
evolve with time. A narrow topic may grow until
it becomes diffused, warranting a finer subdivision.
Memex can propose, based on document similarity,
a subdivision of pages belonging to a folder, which
can lead to a better (re-)organization of the subtopics
associated with that folder.

Trails and topical contexts. An extremely com-
mon question, unanswered by current browsers, is
of the form: ‘Where was I when I was last brows-
ing about classical music?’ Studies have shown that
visiting Web pages is most strongly visualized using
spatial metaphors: your context is ‘where you are’
and where you are able to go next [22].

Once Memex analyzes history as described above,
it becomes possible to reconstruct the recent behav-
ior of the user w.r.t. any topic. This is a valuable
feature to return to a goal-directed browsing session
and resume with context.

Synthesizing a taxonomy for the community.

15 It has been pointed out that users may create folders which
are not dependent on the contents of pages, but other features. If
these features cannot be exposed to our learning programs, there
is little hope for the learners. But content-based classification is
by far the most common case we have seen.



672

Memex is best distinguished from bookmark archival
services by its ability to synthesize a topic taxonomy
from the browsing and bookmarking habits of a user
community. This can be used in turn for better folder
management and additional discovery of relevant
resources from the Web.

1.3. Related work

1.3.1. Bookmark storage services
Internet start-ups have been quick to discover

the annoyance of surfers maintaining multiple book-
mark files and the opportunity of a central, net-
worked bookmark server. We can list several sites
which, using Javascript or a plug-in, import exist-
ing Netscape or Explorer bookmarks and thereafter
let the surfer visit their Website and maintain it us-
ing CGI and Javascript: Yahoo Companion , Ya-
Boo , Baboo , Bookmark Tracker and Back-
flip are some examples. Some services like Third
Voice enable surfers to attach public or private anno-
tations to any page they visit.

Netscape itself has a ‘roaming access’ feature
which is a convenient utility that can ‘FTP’ (actually
LDAP and HTTP are used) the user’s configuration,
history and bookmarks to the client at the beginning
of a session and ‘FTP’ them back to the server at
the end of the session. No content-based analysis is
involved.

Purple Yogi will provide a private client-side
browser assistant which will monitor browsing and
searching actions and use this data to refine future
search results. The technology is not published and
the system is not available at the time of writing. No
community-level mining seems involved.

Our work is closest in spirit to three well-known
and similar systems, VistaBar, PowerBookmarks and
the Bookmark Organizer.

VistaBar [23] is a browsing assistant application
(later integrated into Alta Vista Discovery ) that

lives on the Microsoft Windows desktop and attaches
to the active browser using the DDE (Dynamic Data
Exchange) interface. It provides bookmarking, anno-
tation, indexing, find-similar, find-referrer, and clas-
sification into a shared Yahoo topic taxonomy. We
have been greatly influenced by VistaBar’s technique
of interaction with the browser.

PowerBookmarks [20] is a semi-structured
database application for archiving and searching
bookmark files. By visiting the PowerBookmarks
site, the user gets ‘a browser within the browser’
which has controls for navigation and bookmark-
ing that are provided as CGI forms by the Power-
Bookmarks site. PowerBookmarks uses Yahoo! for
classifying the bookmarks of all users. In contrast,
Memex preserves each user’s view of their topic
space, and reconciles these diverse views at the com-
munity level. Furthermore, PowerBookmarks does
not use hyperlink information for classification or
for synthesizing communities.

The Bookmark Organizer [21] is a useful client-
side solution for personal organization via clustering
and classification, but does not provide community-
level themes or topical surfing contexts.

1.3.2. Mapping tools
Several visualization tools have been designed re-

cently that explore a limited radius neighborhood and
draw clickable graphs. These are often used for site
maintenance and elimination of dead links. Mapuc-
cino and Fetuccino from IBM Haifa are well known
examples [4,15]. There is also a mature research
literature on graph drawing: embedding graphs in
the plane or in 3-D space so as to enhance some
desirable properties such as reduced edge crossing,
hierarchy separation, etc. Spring and Clan Graph De-
composition are some of the well-known techniques
[17,27]. Our context viewer could benefit from better
drawing techniques.

1.3.3. Supervised and semi-supervised learning
Supervised learning of document topics has been

researched extensively in recent years [1,2,6,10,14,
19]. However, less is known about how to best inte-
grate hypertextual features, and specifically how to
exploit diverse patterns of individual bookmarking as



673

new features. Unsupervised clustering is a classical
field for structured data sources [16]. The clustering
problem becomes harder in high-dimensional spaces
such as text. Some well-known systems for cluster-
ing text are HyPursuit [28], Grouper [29] and Scat-
ter-Gather [11]. Clustering is also related to structure
discovery [25].

1.3.4. Resource discovery
Content- and hyperlink-based Web resource dis-

covery has been extensively researched since 1996
[7,9,18]. In most such systems, discovery is deliber-
ate: either a keyword-based query has to be entered
(as in the HITS and Clever topic distillation systems)
or topic nodes in a taxonomy have to be explicitly
populated with examples and marked for exploration
(as in the Focused Crawler ). For ad-hoc similarity
search, Netscape’s browser provides a ‘find similar’
button. However, a single page may not provide
sufficient context information to discover important,
related resources. Dean and Henzinger have provided
an enhanced ‘find-similar’ algorithm [12].

Memex is well-suited to drive the resource dis-
covery process. By synthesizing a topic taxonomy
specific to the interest of a user community, Memex
provides input for topic-based resource discovery
algorithms [9].

Fig. 1. Block diagram of the Memex system.

1.4. Organization of this paper

The paper is organized as follows. Section 2 dis-
cusses the architecture and implementation details,
design decisions, etc. It also introduces the look-and-
feel of the Memex client to the end-user. Section 3
elaborates on the back-end mining techniques used
to provide the client features. These involve under-
standing statistical relations between terms, docu-
ments and folders. Section 4 concludes the paper,
with a wish-list for uniform and robust APIs for
applets to interact with browsers, and a summary of
ongoing and future work.

2. System architecture

Using the Memex client (Fig. 1) should not need
any software installs or browser updates. In view of
secure firewalls, proxies, and ISPs’ restrictions on
browser setups, the client should communicate with
the server over HTTP. The data transferred should be
encrypted if desired to preserve privacy.

On the server side (Fig. 1), the system should
be robust and scalable. It is important that the
server recovers from network and programming er-
rors quickly, even if it has to discard one or two
client events. For both client and server we also want
a rapid prototyping environment. It should be possi-



674

Fig. 2. The Search tab enables boolean and free text search over all archived surfing history. Results can be sorted by various columns.

ble to distribute updates and new features effortlessly
to users.

The Memex client is an applet that interacts with
the browser and connects to the Memex server over
HTTP. The server consists of servlets that per-
form various archiving and mining functions au-
tonomously or triggered by client action. An impor-
tant aspect of the engineering is the division of labor
between the client and the server. Another interest-
ing aspect of the server architecture is the loose data
consistency model supported across text and user
metadata in a relational database and text indices
stored in lightweight storage managers. More details
are given in Section 2.2.

2.1. Client-side design

The Memex client is a signed Java applet which
can be invoked from a Memex server Website, or
using a .html and a .jar or .cab file downloaded
to local disk (a faster option, but one has to manually
check for new versions and updates).

The main challenge with client-side system de-
sign is to pack in a host of useful features into
small and precious screen real estate. Many users
find browser panels already too cluttered since the
days of Lynx and Mosaic. After quite some dummy
trials, we came up with about a 500-by-400 pixel
panel with several function tabs.

2.1.1. Search tab
Memex shows a three-way privacy choice: the

user can choose not to archive clicks, to archive them
as his=her private data, or share it with others. If and
when the user so permits, page visits are reported
to the server. The client and server cooperate to
populate server-side tables with node, link, and visit
meta-data, as well as a full-text index. Currently we
handle only HTML, but we plan to add PS and PDF,
which will be very useful for users in the academic
community. The Search tab, shown in Fig. 2, enables
boolean and free text search over the full text of
surfing history. The responses can be sorted in a
number of ways and clicking on a response takes the
browser to that page.

2.1.2. Folder tab
Each Memex user has a personal folder=topic

space shown in the Folder tab in Fig. 3. Most
users will already have a collection of links in a
browser-specific format. Memex can import these
and attach it to their personal space as shown (Im-
port-timestamp), it can also export to the popular
formats.

Folders are key to characterizing and differen-
tiating between topics of interest to an individual
and to a community. Yet, some users will have no
folder structure in their bookmarks, and others will
keep accumulating bookmarks which are not placed
in any folder (by default, in the root folder which
characterizes ‘any topic’).



675

Fig. 3. Each user has a personal folder=topic space. The user can import existing browser-specific bookmark folders into Memex, which
by default go into the ‘log-in=Import-timestamp’ directory. Folders and their contents can be edited freely. The special ‘Cluster’ folder is
explained later in Section 3.3.2.

Thus for both initial and continual use, surfers
need two functions: discovering a topic taxonomy
and maintaining it. If the user needs suggestions for
(re-)organizing a set of URLs, s=he copies them into
the special folder marked ‘Cluster’ in Fig. 3 and
clicks the Cluster button. The user can then evaluate
the result and cut and paste acceptable folders into
the regular space.

Users will not manually classify most of their
history. Memex will do this lazily in the background,
populating the right panel with URLs whose folder
membership has been ‘guessed,’ visually flagged.
The user can then correct mistakes in folder as-
signment by cutting and pasting 26. This constitutes
valuable training by the user, and helps Memex more
accurately reflect the user’s notion of topics.

2.1.3. Context tab
Studies have shown that visiting Web pages is

best expressed using spatial metaphors: your context
is ‘where you are’ and ‘where you are able to go’
next [22]. Users surf on many topics with diverse
priorities. Because browsers have only a transient
context (one-dimensional history list), surfers fre-
quently lose context when browsing about a topic
after a time lapse.

26 We cannot use drag-and-drop in many places because the full
set of Java Foundation Classes functionality is not available from
most browsers’ JVM.

Once Memex has guessed the folders for un-
classified history pages, providing a topical context
becomes possible. Figs. 4 and 5 show how selecting
a folder lets the user resume their browsing on a
topic ‘from where they left off’. A user-configurable
parameter determines how many of the most recent
nodes are shown.

As the user continues on the trail, new nodes
get added to the graph. It may not be possible to
classify these in real time. New nodes will be added
to the display, and if=when the server responds with
a folder assignment, nodes that do not belong to the
currently selected folder may be dropped from the
display.

Apart from restriction by topic, it is also possible
to restrict context by site. Web surfing often involves
fanning out and backing up. Mapping a small neigh-
borhood of the current page being viewed lets the
user perform these maneuvers with less effort. We
also plan to integrate backlinks into the Context tab
[8].

2.2. Server-side design

System design on the server side is guided by the
concerns of robustness and scalability. We used a
3-tier approach (applet communicates with servlets
which use JDBC to connect to relational databases)
for two main reasons.

HTTP tunneling. Firewalls and proxies will of-
ten forbid non-HTTP traffic. Although several data-



676

Fig. 4. The Trail tab shows a read-only view of the user’s current folder structure. All pages visited by the user are (lazily) classified by
Memex into the folders. When the user selects a folder, Memex shows (a configurable number of the) most recently browsed pages which
belong to the selected topic, reminding the user of the latest topical context. In the screen-shot above, the chosen folder is =Software.

base and middleware vendors are starting to provide
HTTP tunneling support with JDBC, we wanted a
lightweight solution for simplicity and efficiency.

Authentication and access control. Relational
databases provide table- and view-level access con-
trol to users having log-in IDs on the host machine.
In our case, access control information is itself in the
tables.

Fig. 6 shows the basic entities represented in
the Memex server: users, Web pages, visits, links,
and folders. The database design needs to address
the issues of efficient history archival taking care
of user preferences, authentication, and storage of
semi-structured HTML documents.

Server state is managed by two storage mecha-
nisms: a relational database (RDBMS) such as Or-
acle or DB2 for managing meta-data about pages,
links, users, and topics, and a lightweight Berke-
ley DB storage manager to support fine-grained
term-level data analysis for clustering, classification,
and text search. Storing term-level statistics in an
RDBMS would have overwhelming space and time
overheads.

An interesting aspect of the Memex architecture
is the division of labor between the RDBMS and
Berkeley DB. Planning the architecture was made

non-trivial by the need for asynchronous action from
diverse modules. There are some servlet events that
must be guaranteed immediate processing. Typically,
these are generated by a user visiting a page, or
deliberately updating the folder structure. With many
users concurrently using Memex, the server cannot
analyze all visited pages, or update mined results,
in real time. Background demons continually fetch
pages, index them, and analyze them w.r.t. topics and
folders. The data accesses made by these demons
have to be carefully coordinated. This would not be
a problem with the RDBMS alone, but maintaining
some form of coherence between the meta-data in the
RDBMS and several text-related indices in Berkeley
DB required us to implement a loosely consistent
versioning system on top of the RDBMS, with a
single producer (crawler) and several consumers (in-
dexer and statistical analyzers). Fig. 1 shows a block
diagram of the system.

3. Mining the Memex archive

In this section we describe the core algorithms
that run on the databases maintained by the Memex
front-end. We also report on our experiences with



677

Fig. 5. Changing the selection to /Music/Western Classical instantly gives the user a new topical context. The current=latest page is
highlighted.

Fig. 6. The schema for server-side data. RAWFOLDER, TOPIC and RAWTEXT are processed into text indices for search, clustering and
classification. Primary keys are dark. RAWTEXT is stored as a gzipped binary object for space efficiency. Inverted indices and folder are
stored in Berkeley DB.

some of these algorithms. Most of our client features
concern the analysis of relations between people,
pages and folders (topics). (Although we provide a
text-search capability over the history, we regard this
as a standard feature.)

3.1. Experimental test-bed

For continuity, we shall inline our experimental
results into the following subsections as we formu-
late problems and design solutions. For our exper-



678

iments we obtained bookmark files from 23 Web
surfers. They are Web-savvy but not computer sci-
entists. After converting their Netscape and Explorer
bookmark to a common format and throwing away
default folders inserted by those browsers, we were
left with 223 folders. All but two folders were at the
first level; for simplicity we flattened those. These
folders together pointed to 1693 URLs, of which
1424 were distinct.

Memex server-side code has been implemented
in Java and JDBC. It has been tested on a 450
MHz Pentium 2 running RedHat Linux 5.2 with
IBM Universal Database 5.2. Page visit archiving is
real-time, but classification and taxonomy synthesis
take several minutes. These are performed lazily by
demons once or twice a day. In this paper we will
be concerned more with the quality of results than
running times.

3.2. Data models

As mentioned in our description of the Memex ar-
chitecture (Section 2), the main entities represented
in our analyses are Web documents, denoted d;
hyperlinks, denoted (d1, d2); people, denoted p; and
folders, also called topics or classes, denoted f . Each
person has an associated universe of all Web docu-
ments s=he has ever seen, called the history H .p/.
These documents are connected by hyperlinks, some
of which have been traversed by the user.

Each person also owns a tree-structured hierarchy
of folders (which may be just the root node). A typi-
cal user will start by importing their folder structure
from their browser. Because Netscape bookmarks are
stored in a flat file, a folder imported from Netscape
will have an ordering on its children. Internet Ex-
plorer uses directories for folders, so no such order-
ing exists. The folder hierarchy is not fixed for all
time, but our discussion below assumes a snapshot.

Folders reflect the owner’s notion of topics and
their refinement. Some of the documents in the
history are ‘bookmarked’; these are denoted B.p/.
Bookmarks belonging to a particular folder are called
B.p; f /. This means that a hyperlink to such a doc-
ument is placed in some folder by a person. A
document can be bookmarked by many people, but a
person can only place a document in one folder. (In
ongoing work we are relaxing this restriction.)

3.3. Learning and discovering topics

In supervised learning, the goal is to use the
association between B.p/ and the folders to learn
to assign documents in H .p/nB.p/ to the user’s
predefined folders. In unsupervised topic discovery,
Memex inputs a set of documents from H .p/ and
proposes a tree-structured topic hierarchy that clus-
ters the documents based on their contents.

3.3.1. Supervised learning
Statistical model-based learning [13,24] has been

one of the most effective methods for learning doc-
ument topics. In its simplest form, our text classifier
regards a document d as a bag or multi-set of terms:
the term t occurs n.d; t/ times and the document
has a total length of n.d/ D Pt n.d; t/. We do not
consider multi-term phrases as features (yet).

Each folder f has an associated parameter �. f; t/
for each term t over a suitably large universe T of
terms. Roughly, �. f; t/ is the rate at which term
t occurs in documents belonging to folder f , and
can be estimated from B.p; f /. One can regard
�. f; t/ as the probabilities on the face of a die
with T -faces, where

P
t �. f; t/ D 1. A document d

that is known to belong to folder f (in statistical
terms, be generated from folder f ) is written as
follows: first an arbitrary length n.d/ is decided,
then the above die is tossed so many times, and
the terms corresponding to the faces that come up
written down. Thus the probability of generation of
the document is:

Pr.dj f / D
�

n.d/
fn.d; t/g

�Y
t2d

�. f; t/n.d;t/: (1)

Using Bayes rule, we can conversely find the
probability Pr. f jd/ that a document was generated
by the distribution associated with a given folder.

It turns out that modeling the text alone does
not give sufficient classification accuracy, because
people tend to bookmark pages with little textual and
much graphical content, as well as many links. In
Section 3.3.3 we will discuss how to improve the
accuracy of folder assignment using co-placement
of URLs in folders. The Memex engine continually
scans the NODE table in search of new classifications
to do, and updates the TOPIC table.



679

3.3.2. Unsupervised learning
Topics will change with time, and users will

reorganize their folder structure. The most common
requirement for reorganization is refinement of a
topic: the user’s initial notion of a topic may be
broad and shallow, but with time, the user collects a
large number of links under that topic, which now
needs to be refined into subtopics. This is a classic
case of unsupervised learning or clustering [16].

An extension of the vector space model [26], sim-
ilar to the bag-of-words model is used for clustering
documents. In the basic vector space model, each
document d is represented as a point in multi-dimen-
sional Euclidean space; each dimension is a term t ,
and the coordinate in that dimension is n.d; t/ 27.
Documents are normalized to have L2 norm equal to
one.

The similarity s.d1; d2/ between unit-length doc-
uments d1 and d2 is the cosine of the angle between
their vectors, i.e., the inner product hd1; d2i. Since
the role of clustering is to find large similar sets of
documents, we use the definition of self-similarity of
a set � from the Scatter-Gather system [11]:

s.� / D 1

j� j.j� j � 1/

X
d1;d22�;d1 6Dd2

s .d1; d2/ : (2)

27 Various scale factors such as term frequency times inverse
document frequency (TFIDF) are often used, but we omit these
details for clarity.

Fig. 7. Verification that folders tend to be reasonably coherent as judged by a reference taxonomy. Pairs of URLs were selected from
our Netscape bookmark collection, the page fetched, its frequent terms formed into a query, and this query classified using Yahoo, to
see if both belong to the same Yahoo class. The fraction of times this happens is plotted against the distance (in number of intervening
out-links) between the two URLs.

We use a hierarchical agglomerative approach
[11,16,21], in which we initially have each document
to be clustered in its own group � , and at each
step, that pair (�;Ð) is merged which leads to the
maximum s.� [Ð/. This step is repeated until only
one group is left with all documents in it.

3.3.3. Exploiting hints from folder membership
Suppose a page d has to be classified for a person

p1, where d has already been bookmarked in some
folder c2 by another user p2. Suppose many other
members of c2 have been bookmarked by p1 as
being in folder c1; then there is reason to guess that d
may belong to c1 too. More generally, regarding p2’s
folders as a reference taxonomy (such as Yahoo!), we
can take all of p1’s bookmarked pages, and run them
through p2’s classifier. We also run d through p2’s
classifier, obtaining its class cp2.d/. We consider all
documents D from p1 which are in this same class,
and guess the most frequently occurring class label
(from p1’s folder system) as the class for d.

This experiment was performed with the first level
of Yahoo!. The results shown in Fig. 7, while intu-
itive, are quite instructive: almost half the time, user
folders are pairwise consistent at the first level of
Yahoo! There is also a mild locality effect: if the
folder is represented in HTML (as in Netscape)
and two URLs are a short distance apart, this
makes it more likely that their Yahoo-topics are
the same.



680

This suggests the following algorithms:
(1) Build text-based classifiers for all users p.
(2) We are given a document d to classify under p1.

Find d in other users’ folders to find a set of
folders C2. (If d is not found in anyone else’s
folders then fail.) Next we have two variants,
folder and locality.

(3) (Folder) Classify all documents under each
folder in C2 as per p1’s folder system. Consider
the majority class as the class for d.

(4) (Locality) Suppose d is found in a folder c2. Call
this offset zero. Scan left and right until d�i and
dC j are found in c2, such that d�i and dC j are
classified under p1. If these classes are the same,
output this class, otherwise, fail.

We measured recall (coverage) and precision (for
what fraction of documents was the proposed class
approved by the user). The results are shown in
Fig. 8. Because the algorithm might flag a failure,
recall is not perfect, but, in the cases where it can
generate a folder assignment, the answer is signifi-
cantly more accurate than using the text accumulated
by user p1 alone. Basically, an extended vocabu-
lary contributed by the whole community makes far
more accurate classification. We also verified that
our collection of bookmarks were reasonably spread
out across Yahoo’s taxonomy, hitting eight of the
fourteen classes of Yahoo shown in Fig. 7.

Fig. 8. Results of exploiting folder co-location and link locality
for classifying history.

3.4. The community taxonomy synthesis problem

The results above clearly show that relations be-
tween pages (such as being placed in same or differ-
ent folders) are quite important as features for learn-
ing. HyPursuit [28] recognized this, but only offered
hand-tuned weights for different feature types. Sim-
ilar issues also arise in combining text, HTML tags,
and hyperlinks into one model. Basically, we want
to exploit the fact that co-location of documents in a
folder hint at a semantic similarity which should be
factored in together with our text-based similarity in
Eq. 2).

3.4.1. Problem formulation
The input to the problem is the following initial

graph N with three layers of nodes, D for docu-
ments, G for groups, and F for folders. Initially,
there are as many groups as documents, and each
document is in its own group. We convert the origi-
nal bipartite relation between folders and documents
into a tripartite representation to help standardize
the graph cost models in our algorithms (in Sec-
tion 3.4.2). There is a many-to-many mapping be-
tween folders and groups. A folder maps to at least
one group and vice versa. The F-to-G and G-to-D
mappings induce each folder f to include a set of
documents D f ; these sets can be overlapping. D f

induces a term distribution T f for folder f . We have
various choices for characterizing T f , some will be
discussed later.

The goal of taxonomy synthesis is to derive a new
three-layer graph N 0. In N 0, D0 D D and F 0 D F ,
but G0 and the connecting edges have been modi-
fied. Groups no longer contain a single document in
general. The F-to-G0 mapping is many-to-many as
before. Associated with such three-layer graphs is a
cost model. N has some initial cost. N 0 has some
(hopefully) lower cost. Our goal is to derive N 0 with
as small a cost as possible (see Fig. 9).

Now we design the cost model. The cost of a
graph is the sum of the distortion and mapping costs.
Distortion is a measure of how much the new term
distribution T 0f of a folder differs from the ‘true’
distribution T f (i.e., what is the penalty for changing
the red subgraph). Distortion is denoted D.T 0f kTf /,
also called the Kullbach–Leibler distance. For the
initial graph, distortion is zero by definition. The



681

Fig. 9. A formulation for the community taxonomy synthesis problem. Initially, each document is a group or theme by itself. Finally, we
want a highly compressed representation of the tripartite mappings while distorting the term distributions for original folders (induced by
the dark subgraphs with dotted edges) as little as possible.

mapping cost is a measure of the complexity of
specifying G or G0 and the edges in the graph.

Why do we seek to minimize the total cost?
This leads to the ‘simplest’ description of the data,
which is the best model, according to the Minimum
Description Length principle. For many formulations
of the distance measure, the problem is at least as
hard as set-cover. Hence we resort to fast heuristics.

3.4.2. Heuristics and experience
The first problem is with the KL-distance. Over

the set of terms T, let IT range through the set of all
possible document events; i.e., all possible vectors of
term counts. The KL distance of a distribution T 0

with reference to another distribution T is:

D.T 0kT / D
X

IT

PrT .IT/ log
PrT .IT/

PrT 0.IT/
: (3)

The KL distance is not symmetric; however, it
is non-negative and zero only for T D T 0. The
sum over all IT is impractical to compute; even
with the binary model, there will be 2jTj terms in
the sum. Therefore, we take recourse to inter-term
independence as in the bag-of-words model, except
we use a binary document model, where word counts
are ignored for simplicity.

D.T 0kT / D
X

t

�t.log�t � log�0t/

C .1� �t/.log.1� �t/� log.1� �0t// (4)

where �t D PrT .t/ and �0t D PrT 0.t/.
Mapping costs for the edges can be approximately

estimated by encoding the vertex IDs using a Shan-
non-optimal code. Details are omitted for lack of
space.

With this two-part cost model in mind, we will
compare three heuristics: LeafUnion, SingleBest and
Bicriteria, as specified next.

LeafUnion. This is the trivial mapping corre-
sponding to each folder simply maintaining a ‘link’
to the original documents. The distortion cost is zero
by definition, but the mapping cost is large. The
mapping is not exploiting document similarities at
all.

SingleBest. Once the hierarchical agglomerative
cluster tree (dendogram) is built, each folder is as-
signed to exactly one node in the dendogram. Here
we are trying to cut down on mapping cost, hoping
that the clustering step will bring related documents
under the same subtree so that few links will suffice.
This may entail significant distortion.

Bicriteria. This heuristic recognizes the tension
between mapping and distortion cost. It starts similar
to hierarchical agglomerative clustering (HAC) with
a frontier of groups, each with one document. In
the end, it has a smaller frontier, with the original
folders mapping to the surviving groups. Unlike in
SingleBest, a folder can map to many groups.

The algorithm is a greedy cost-based sequence of
merges. When two groups � and Ð on the frontier
are evaluated for merging, we do not use s.� [Ð/ as
the goodness measure. Assuming all folder pointing
to either � orÐ will point to their union, we estimate
ž the decrease in mapping cost because of edges

saved by the merger,
ž the increase in distortion because of extraneous

documents in � and Ð, and
ž perform that merge with minimum increase in

overall cost.
Sample results are shown in Fig. 10. As expected,

LeafUnion pays too much in mapping cost and Sin-
gleBest pays too much in distortion cost. Although
evaluation of discovered themes is necessarily sub-
jective at this point, inspection of Bicriteria results
showed that themes were being factored out of par-
tially overlapping topics corresponding to folders of
different users.



682

Fig. 10. Results for taxonomy synthesis, showing that both col-
location in folders and term distribution are important features.

4. Conclusion

We have reported on the design and implemen-
tation of Memex, a companion on the Web for
individuals and communities. We have demonstrated
that Memex is effective in archiving and analyzing
surfing patterns to bring out useful organization of
surfing history. Specifically, Memex helps organize
history into coherent topics, and relate topics be-
tween different users. It also enables search over the
entire surfing history.

4.1. Status report

Memex is currently being tested by local volun-
teers after which we will make the service avail-

import com.netscape.browser.*;
// or import com.ms.browser.*;
Browser b = Browser.getBrowser();
Vector wl = b.getBrowserWindows();
BrowserWindow bw = (BrowserWindow) wl.elementAt(0);
bw.addPageLoadListener(new PageLoadListener() {

public void actionPerformed(LoadEvent le) {
URL location = le.getURL(), referrer D le.getReferrer();
String title = le.getTitle();
Vector outLinkList = le.getOutlinks();
// use these : : :

}
};

It goes without saying that the non-standard secu-
rity and browser interaction interfaces cause much

grief and prevent any serious browser-based Java
developer from writing simple, clean code. The Java

able for beta-testing. The client-side code runs on
Netscape and Internet Explorer. A port is planned
for HotJava and the JDK1.2 plug-in. Initial user
feedback is that the client is intuitive and easy to
use. However, the server is non-trivial to set up;
knowledge of Apache, JServ, and some relational
database like Oracle is needed. We wish to make
server installation much simpler using scripts.

4.2. Recommendations for browser vendors

Anyone who develops serious Java code for
browsers knows that Java’s promise is sadly distant.
The leading browsers differ significantly in their se-
curity API, as well as the API through which applets
can get access to browser information. Dealing with
this lack of standardization was quite difficult. Even
Javascript differs across browsers; on Explorer there
is a dialect called JScript.

The Memex client monitor module communi-
cates with the browser using DDE on Windows and
LiveWire (Java-to-Javascript communication tool)
on UNIX, to read browser state variables.

We hope that our experiences with grafting
Memex into the two most popular browsers will
encourage the vendors of these browsers to evolve a
more friendly and uniform browser interaction API
which they or we can use for more advanced browser
assistants. Specifically, we recommend that trusted
applets get a handle to a Browser object which can
then be used to interact closely with the browser:



683

2 plug-in will remove the security-related problems,
but not the browser interaction issues.

4.3. Interaction with other systems and meta-data

Planned extensions to Memex involve integration
with a caching proxy using ICP (Internet Caching
Protocol). Currently, proxies associate URLs with
content, and run variants of weighted LRU strategies.
We believe that Memex, by analyzing content, can
more intelligently advice the proxy about prefetching
and eviction policies, thus tuning to the community
that it serves. Memex can also help proxy servers
detect mirror sites, reducing pressure on the cache.
This will in turn help Memex to get its bulk of
document fetches from the proxy.

The Resource Description Framework (RDF),
based on XML, provides a uniform syntax for defin-
ing and exchanging meta-data about Web pages in a
format that can be manipulated by programs. Various
communities are defining and agreeing on resource
descriptions suited to their applications. In the con-
text of Memex, a description language for topic tax-
onomies and associated resources, such as developed
by the Open Directory, would be very useful. We in-
tend to adapt that format to the description of individ-
ual and community interest profiles as well, through
designing suitable description formats for folders and
synthesized taxonomies.

Our premise is that Memex servers will find util-
ity at the workgroup or organization level. In the next
phase, we plan to develop and design protocols for
interaction between distributed Memex servers for
consolidating documents, topics, and communities
across diverse geographical regions. Such coopera-
tive analysis will help generate strategies for band-
width and cache management for long-haul ISPs as
well.

Acknowledgements

Thanks to S. Sudarshan for helpful discussions,
to Hannes Marais for tips on using DDE, and to
the reviewers for helping improve the presentation
of the paper. Thanks to the School of Information

Technology, IIT Bombay, for providing supplemen-
tary network resources during the work. Memex
builds upon many pieces of public domain software:
HTTPClient, Cryptix, JFlex, and Berkeley DB.

References

[1] C. Apte, F. Damerau and S.M. Weiss, Automated learning
of decision rules for text categorization, ACM Transac-
tions on Information Systems, 1994, IBM Research Report
RC18879.

[2] C. Apte, F. Damerau and S.M. Weiss, Towards language
independent automated learning of text categorization mod-
els, in: SIGIR, 1994, IBM Research Report RC19481.

[3] R. Barrett and P.P. Maglio, Intermediaries: new places for
producing and manipulating web content, in: 7th Interna-
tional World Wide Web Conference, Brisbane, 1998, Online
versions: HTML, PDF.

[4] I. Ben-Shaul, M. Herscovici, M. Jacovi, Y.S. Maarek, D.
Pelleg, M. Shtalheim, V. Soroka and S. Ur, Adding support
for dynamic and focused search with Fetuccino, in: 8th
World Wide Web Conference, Toronto, May 1999.

[5] V. Bush, As we may think, The Atlantic Monthly,
July 1945, Online at http://www.theatlantic.com/unbound/
flashbks/computer/bushf.htm.

[6] S. Chakrabarti, B. Dom, R. Agrawal and P. Raghavan,
Scalable feature selection, classification and signature gen-
eration for organizing large text databases into hierarchi-
cal topic taxonomies, VLDB Journal, Aug. 1998, Invited
paper, online at http://www.cs.berkeley.edu/¾soumen/VLD-
B54_3.PDF.

[7] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Ragha-
van and S. Rajagopalan, Automatic resource compilation
by analyzing hyperlink structure and associated text, in: 7th
World Wide Web Conference (WWW7), 1998, Online at
http://www7.scu.edu.au/programme/fullpapers/1898/com18
98.html.

[8] S. Chakrabarti, D.A. Gibson and K.S. McCurley, Surfing
the Web backwards, in: WWW, Vol. 8, Toronto, May 1999,
Online at http://www8.org.

[9] S. Chakrabarti, M. van den Berg and B. Dom, Focused
crawling: a new approach to topic-specific web resource
discovery, Computer Networks 31 (1999) 1623–1640 (first
appeared in the 8th International World Wide Web Confer-
ence, Toronto, May 1999), Available online at http://www8.
org/w8-papers/5a-search-query/crawling/index.html.

[10] W.W. Cohen, Integration of heterogeneous databases with-
out common domains using queries based on textual simi-
larity, in: SIGMOD, Seattle, WA, 1998, ACM.

[11] D.R. Cutting, D.R. Karger and J.O. Pedersen, Constant
interaction-time scatter=gather browsing of very large doc-
ument collections, in: Annual International Conference on
Research and Development in Information Retrieval, 1993.

[12] J. Dean and M.R. Henzinger, Finding related pages in the



684

world wide web, in: 8th World Wide Web Conference,
Toronto, May 1999.

[13] R. Duda and P. Hart, Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

[14] S. Dumais, J. Platt, D. Heckerman and M. Sahami, Induc-
tive learning algorithms and representations for text cate-
gorization, in: 7th Conference on Information and Knowl-
edge Management, 1998, Online at http://www.research.
microsoft.com/¾jplatt/cikm98.pdf.

[15] M. Hersovici, M. Jacovi, Y.S. Maarek, D. Pelleg, M. Shtal-
heim and S. Ur, The Shark-Search algorithm — an appli-
cation: tailored web site mapping, in: 7th World Wide Web
Conference, Brisbane, Apr. 1998, Online at http://www7.
scu.edu.au/programme/fullpapers/1849/com1849.htm.

[16] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[17] T. Kamada and S. Kawai, An algorithm for drawing gen-
eral undirected graphs, Information Processing Letters 31
(1989) 7–15.

[18] J. Kleinberg, Authoritative sources in a hyperlinked en-
vironment, in: ACM–SIAM Symposium on Discrete Al-
gorithms, 1998, Online at http://www.cs.cornell.edu/home/
kleinber/auth.ps.

[19] D. Koller and M. Sahami, Hierarchically classifying docu-
ments using very few words, in: International Conference
on Machine Learning, Vol. 14, Morgan-Kaufmann, Los Al-
tos, CA, July 1997, Online at http://robotics.stanford.edu/
users/sahami/papers-dir/ml97-hier.ps.

[20] W.-S. Li, Q. Vu, D. Agrawal, Y. Hara and H. Takano,
PowerBookmarks: a system for personalizable Web in-
formation organization, sharing and management, Com-
puter Networks 31, May 1999 (first appeared in the
8th International World Wide Web Conference, Toronto,
May 1999), Available online at http://www8.org/w8-
papers/3b-web-doc/power/power.pdf.

[21] Y.S. Maarek and I.Z. Ben Shaul, Automatically organizing
bookmarks per content, in: Fifth International World Wide
Web Conference, Paris, May 1996.

[22] P.P. Maglio and T. Matlock, Metaphors we surf the Web
by, in: Workshop on Personalized and Social Navigation in
Information Space, Stockholm, 1998.

[23] H. Marais and K. Bharat, Supporting cooperative and per-

sonal surfing with a desktop assistant, in: Proc. of UIST’97,
ACM, Oct. 1997, pp. 129–138, Online at http://www.
research.digital.com/SRC/personal/Johannes_Marais/pub/
uist97/uist97paper.pdf.

[24] T. Mitchell, Machine Learning, McGraw-Hill, New York,
1997.

[25] R.R.P. Pirolli and J. Pitkow, Silk from a sow’s ear: extract-
ing usable structures from the web, in: ACM CHI, 1996.

[26] G. Salton and M.J. McGill, Introduction to Modern Infor-
mation Retrieval, McGraw-Hill, New York, 1983.

[27] F.-S. Shieh and C. McCreary, Directed graphs by clan-based
decomposition, in: Graph Drawing, 1995, pp. 472–482.

[28] R. Weiss, B. Velez, M.A. Sheldon, C. Nemprempre, P. Szi-
lagyi, A. Duda and D.K. Gifford, HyPursuit: a hierarchical
network search engine that exploits content-link hypertext
clustering, in: Proc. of the Seventh ACM Conference on
Hypertext, Washington, DC, Mar. 1996.

[29] O. Zamir and O. Etzioni, Grouper: a dynamic clustering
interface to Web search results, in: 8th International World
Wide Web Conference, Toronto, May 1999, pp. 283–296,
Elsevier, Amsterdam.

Soumen Chakrabarti received his B.Tech in Computer Science
from the Indian Institute of Technology, Kharagpur, in 1991 and
his M.S. and Ph.D. in Computer Science from the University of
California, Berkeley in 1992 and 1996. At Berkeley he worked
on compilers and runtime systems for running scalable parallel
scientific software on message passing multiprocessors. He was
a Research Staff Member at IBM Almaden Research Center be-
tween 1996 and 1999. At IBM he worked on hypertext analysis
and information retrieval. He designed the Focused Crawler and
part of the Clever search engine. He is currently an Assistant
Professor in the Department of Computer Science and Engineer-
ing at the Indian Institute of Technology, Bombay. His research
interests include hypertext information retrieval, Web analysis
and data mining.

Sandeep Srivastava, Mallela Subramanyam, and Mitul Tiwari
are junior-year students in the Computer Science and Engineer-
ing Department at IIT Bombay. Their research interests include
hypertext databases and data mining.


